Environmental Resources
Environmental resources
An environmental resource is any material, service, or information from the environment that is valuable to society. This can refer to anything that people find useful in their environs, or surroundings. Food from plants and animals, wood for cooking, heating, and building, metals, coal , and oil are all environmental resources. Clean land, air, and water are environmental resources, as are the abilities of land, air, and water to absorb society's waste products. Heat from the sun, transportation and recreation in lakes, rivers, and oceans, a beautiful view, or the discovery of a new species are all environmental resources.
The environment provides a vast array of materials and services that people use to live. Often these resources have competing uses and values. A piece of land, for instance, could be used as a farm, a park, a parking lot, or a housing development. It could be mined or used as a garbage dump. The topic of environmental resources, then, raises the question, what do people find valuable in their environment, and how do people choose to use the resources that their environment provides?
Some resources are renewable, or infinite, and some are non-renewable, or finite. Renewable resources like energy from the sun are plentiful and will be available for a long time. Finite resources, like oil and coal, are non-renewable because once they are extracted from the earth and burned they cannot be used again. These resources are in limited supply and need to be used carefully. Many resources are becoming more and more limited, especially as population and industrial growth place increasing pressure on the environment. Before the Industrial Revolution, for example, people relied on their own strength and their animals for work and transportation. The invention of the steam engine in the 1850s radically altered peoples' ability to do work and to consume energy. Today we have transformed our environment with machines, cars, and power plants and in the process we have burnt extraordinary amounts of coal, oil, and natural gas . Some predict that world coal deposits will last another 200 years, while oil and natural gas reserves will last another one hundred years at current rates of consumption. This rate of use is clearly not sustainable. The terms finite and infinite are important because they indicate how much of a given resource is available, and how fast people can use that resource without limiting future supplies.
Some resources that were once taken for granted are now becoming more valuable. One of these resources is the environment's ability to absorb the waste that people produce. In Jakarta, Indonesia, people living in very close quarters in small shanties along numerous tidal canals use their only water supply for bathing, washing clothes, drinking water, fishing, and as a toilet. It is common to see people bathing just down stream from other people who are defecating directly into the river. This scene illustrates a central problem in environmental resource management. These people have only one water source and many needs in order to live. The demands that they place on these resources seriously affect the health and quality of life for all the people, but all of the needs must be met in some way. Thoughtful management of these environmental resources, like building latrines, could alleviate some of the strain on the river and improve other uses of the same resource. People all over the world have taken for granted the valuable resources of air, land, and water quality so that many rivers are undrinkable and unswimable because they contain raw sewage, chemical fertilizers, and industrial wastes. As people make decisions about what they will take from their environment, they also must be conscious of what they intend to put back into that environment.
Resource economics was established during a time in human history when environmental resources were thought to be limitless and without value until they were harvested and brought to market. From this viewpoint, the world is big enough that when one resource is exhausted another resource can be found to take its place. Land is valuable according to what can be taken from it in order to make a profit. This kind of management leads to enormous short term gains and is responsible for the speed and efficiency of economic growth throughout the world. One the other hand, this view overlooks longer term profits and the reality that the world is an increasingly small, interconnected, and fragile system. People can no longer assume that they can find fresh new supplies when they use up what they have. Very few places on earth remain untouched and unexploited.
The world's remaining forests, if managed with care, could supply all of society's needs for timber and still remain relatively healthy and intact. Forest resources can be renewable, since forests grow quickly enough to replace themselves if used in moderation. Unfortunately, in many places forests are being destroyed at an alarming rate. In Costa Rica, Central America, 25% of the remaining forest land has disappeared since 1970. These forests have been cleared to harvest tropical hardwoods, to create farmland and pasture for animals, and to forage wood for cooking and heating. In a country struggling for economic growth, these are all important needs, but they do not always make long term economic sense. Farmers who graze cattle in tropical rain forests or who clear trees off of steep hillsides destroy their land in a matter of years with the idea that this is the fastest way to make money. In the same way, loggers harvest trees for immediate sale, even though many of these trees take hundreds of years to replenish themselves. In fact, the price for tropical hardwoods has gone up four-fold since 1970. The trees cut and sold in 1970 represent a huge economic loss to the Costa Rican economy, since they were sold for a fraction of their present value. Often, the soil on this land quickly erodes downhill into streams and rivers, clogging the rivers with sediment and killing fish and other wildlife . This has the added drawback of damaging hydroelectric and irrigation dams and hurting the fishing industry.
Despite these tragic losses, Costa Rica is a model in Central America and in the world for finding alternative uses for its natural resources . Costa Rica has set aside one fifth of its total land area for nature preserves and national park lands. These beautiful and varied parks are valuable for several reasons. First, they help to protect and preserve a huge diversity of tropical species, many undiscovered and unstudied. Second, they protect a great deal of vegetation that is important in producing oxygen, stabilizing atmospheric chemistry, and preventing global climate change. Third, the natural beauty of these parks attracts many international tourists. Tourism is one of Costa Rica's major industries, providing much needed economic development. People from around the world appreciate the beauty and the wonder—the intangible values—of these resources. Local people who would have been hired one time to cut down a forest can now be hired for a lifetime to work as park rangers and guides. Some would also argue that these nature preserves have value in themselves without reference to human needs, simply because they are filled with beautiful living birds, insects, plants, and animals.
Much of the dialogue in environmental resource management is about the need to balance the needs for economic growth and prosperity with needs for sustainable resource use. In a limited, finite world, there is a need to close the gap between the rates of consumption and rates of supply. The debate over how to assign value to different environmental resources is a lively one because the way that people think about their environment directly affects how they interact with the world.
[John Cunningham ]
RESOURCES
BOOKS
Ahmad, Y., et al. Environmental Accounting and Sustainable Development: A UNEP World Bank Symposium. Washington, DC: World Bank, 1989.
PERIODICALS
Repetto, R. "Accounting for Environmental Assets." Scientific American 266 (June 1992): 94–8+.